Польза и вред радиоактивного излучения. Вопрос


Радиоактивность была открыта в 1896 г. французским ученым Антуаном Анри Беккерелем при изучении люминесценции солей урана. Оказалось, что урановые соли без внешнего воздействия (самопроизвольно) испускали излучение неизвестной природы, которое засвечивало изолированные от света фотопластинки, ионизовало воздух, проникало сквозь тонкие металлические пластинки, вызывало люминесценцию ряда веществ. Таким же свойством обладали и вещества содержащие полоний 21084Ро и радий 226 88Ra.

Еще раньше, в 1985 г. были случайно открыты рентгеновские лучи немецким физиком Вильгельмом Рентгеном. Мария Кюри ввела в употребление слово «радиоактивность».

Радиоактивность – это самопроизвольное превращение (распад) ядра атома химического элемента, приводящее к изменению его атомного номера или изменению массового числа. При таком превращении ядра происходит испускание радиоактивных излучений.

Различаются естественная и искусственная радиоактивности. Естественной радиоактивностью называется радиоактивность, наблюдающаяся у существующих в природе неустойчивых изотопов. Искусственной радиоактивностью называется радиоактивность изотопов, полученных в результате ядерных реакций.

Существует несколько видов радиоактивного излучения, отличающихся по энергии и проникающей способности, которые оказывают неодинаковое воздействие на ткани живого организма.

Альфа-излучение - это поток положительно заряженных частиц, каждая из которых состоит из двух протонов и двух нейтронов. Проникающая способность этого вида излучения невелика. Оно задерживается несколькими сантиметрами воздуха, несколькими листами бумаги, обычной одеждой. Альфа-излучение может быть опасно для глаз. Оно практически не способно проникнуть через наружный слой кожи и не представляет опасности до тех пор, пока радионуклиды, испускающие альфа-частицы, не попадут внутрь организма через открытую рану, с пищей или вдыхаемым воздухом - тогда они могут стать чрезвычайно опасными. В результате облучения относительно тяжелыми положительно заряженными альфа-частицами через определенное время могут возникнуть серьезные повреждения клеток и тканей живых организмов.

Бета-излучение - это поток движущихся с огромной скоростью отрицательно заряженных электронов, размеры и масса которых значительно меньше, чем альфа-частиц. Это излучение обладает большей проникающей способностью по сравнению с альфа-излучением. От него можно защититься тонким листом металла типа алюминия или слоем дерева толщиной 1.25 см. Если на человеке нет плотной одежды, бета-частицы могут проникнуть через кожу на глубину несколько миллиметров. Если тело не прикрыто одеждой, бета-излучение может повредить кожу, оно проходит в ткани организма на глубину 1‑2 сантиметра.

Гамма-излучение, подобно рентгеновским лучам, представляет собой электромагнитное излучение сверхвысоких энергий. Это излучение очень малых длин волн и очень высоких частот. С рентгеновскими лучами знаком каждый, кто проходил медицинское обследование. Гамма-излучение обладает высокой проникающей способностью, защититься от него можно лишь толстым слоем свинца или бетона. Рентгеновские и гамма-лучи не несут электрического заряда. Они могут повредить любые органы.

Все виды радиоактивного излучения нельзя увидеть, почувствовать или услышать. Радиация не имеет ни цвета, ни вкуса, ни запаха. Скорость распада радионуклидов практически нельзя изменить известными химическими, физическими, биологическими и другими способами. Чем больше энергии передаст излучение тканям, тем больше повреждений вызовет оно в организме. Количество переданной организму энергии называется дозой. Дозу облучения организм может получить от любого вида излучения, в том числе и радиоактивного. При этом радионуклиды могут находиться вне организма или внутри его. Количество энергии излучения, которое поглощается единицей массы облучаемого тела, называется поглощенной дозой и измеряется в системе СИ в грэях (Гр).

При одинаковой поглощенной дозе альфа-излучение гораздо опаснее бета- и гамма-излучений. Степень воздействия различных видов излучения на человека оценивают с помощью такой характеристики как эквивалентная доза. разному повреждать ткани организма. В системе СИ ее измеряют в единицах, называемых зивертами (Зв).

Радиоактивным распадом называется естественное радиоактивное превращение ядер, происходящее самопроизвольно. Ядро, испытывающее радиоактивный распад, называется материнским; возникающее дочернее ядро, как правило, оказывается возбужденным, и его переход в основное состояние сопровождается испусканием γ-фотона. Т.о. гамма-излучение - основная форма уменьшения энергии возбужденных продуктов радиоактивных превращений.

Альфа-распад. β-лучи представляют собой поток ядер гелия Не. Альфа-распад сопровождается вылетом из ядра α-частицы (Не), при этом первоначально превращается в ядро атома нового химического элемента, заряд которого меньше на 2, а массовое число – на 4 единицы.

Скорости, с которыми α-частицы (т.е. ядра Не) вылетают из распавшегося ядра, очень велики (~106 м/с).

Пролетая через вещество, α-частица постепенно теряет свою энергию, затрачивая ее на ионизацию молекул вещества, и, в конце концов, останавливается. α-частица образует на своем пути примерно 106 пар ионов на 1 см пути.

Чем больше плотность вещества, тем меньше пробег α-частиц до остановки. В воздухе при нормальном давлении пробег составляет несколько см, в воде, в тканях человека (мышцы, кровь, лимфа) 0,1-0,15 мм. α-частицы полностью задерживаются обычным листком бумаги.

α- частицы не очень опасны в случае внешнего облучения, т.к. могут задерживаться одеждой, резиной. Но α-частицы очень опасны при попадании внутрь человеческого организма, из-за большой плотности производимой имим ионизации. Повреждения, возникающие в тканях не обратимы.

Бета-распад бывает трех разновидностей. Первый – ядро, претерпевшее превращение, испускает электрон, второе – позитрон, третье – называется электронный захват (е-захват), ядро поглощает один из электронов.

Третий вид распада (электронный захват) заключается в том, что ядро поглощает один из электронов своего атома, в результате чего один из протонов превращается в нейтрон, испуская при этом нейтрино:

Скорость движения β-частиц в вакууме равна 0,3 – 0,99 скорости света. Они быстрее чем α-частицы, пролетают через встречные атомы и взаимодействуют с ними. β–частицы обладают меньшим эффектом ионизации (50-100 пар ионов на 1 см пути в воздухе) и при попадании β-частицы внутрь организма они менее опасны чем α-частицы. Однако проникающая способность β-частиц велика (от 10 см до 25 м и до 17,5 мм в биологических тканях).

Гамма-излучение – электромагнитное излучение, испускаемое ядрами атомов при радиоактивных превращениях, которое распространяется в вакууме с постоянной скоростью 300 000 км/с. Это излучение сопровождает, как правило, β-распад и реже – α-распад.

γ-излучение подобно рентгеновскому, но обладает значительно большей энергией (при меньшей длине волны). γ–лучи, являясь электрически нейтральными, не отклоняются в магнитном и электрическом полях. В веществе и вакууме они распространяются прямолинейно и равномерно во все стороны от источника, не вызывая прямой ионизации, при движении в среде они выбивают электроны, передавая им часть или всю свою энергию, которые производят процесс ионизации. На 1см пробега γ-лучи образуют 1-2 пары ионов. В воздухе они проходят путь от нескольких сот метров и даже километров, в бетоне – 25 см, в свинце – до 5 см, в воде – десятки метров, а живые организмы пронизывают насквозь.

γ-лучи представляют значительную опасность для живых организмов как источник внешнего облучения.

В данной статье мы ознакомимся с термином «радиоактивность». Это понятие мы рассмотрим в общем виде, с точки зрения протекания процесса распада. Проанализируем главные виды излучения закон распада, исторические данные и многое другое. Отдельно остановимся на понятии «изотоп» и ознакомимся с явлением электронного распада.

Введение

Радиоактивность - это качественный параметр атомов, который позволяет некоторым изотопам распадаться в самопроизвольном порядке и испускать при этом излучение. Первое подтверждение этому утверждению было сделано Беккерелем, проводившим опыты над ураном. Именно по этой причине, лучи, испускаемые ураном, наименовывались в его честь. Явление радиоактивности - это выброс альфа- или бета-частички из ядра атома. Радиоактивность выражает себя в виде разложения атомного ядра определенного элемента и позволяет последнему превращаться из атома одного элемента в другой.

В ходе данного процесса происходит распад исходного атома с последующим превращением в атом, характеризующий другой элемент. Результатом выбрасывания четырех альфа-частиц из атомного ядра станет уменьшение массового числа, которое образует сам атом, на четыре единицы. Это приводит к сдвигу в таблице Менделеева на пару позиций влево. Данное явление вызвано тем, что в ходе «альфа-выстрела» были выброшены 2 протона и 2 нейтрона. А номер элемента, как мы помним, соответствует количеству протонов в ядре. Если выброшена была бета-частица (е -) то следом происходит трансформация нейтрона из ядра в один протон. Это приводит к сдвигу в таблице Менделеева на одну клеточку вправо. Масса изменяется на крайне малые значения. Выброс отрицательно заряженных электронов сопряжен с излучением гамма-лучей.

Закон распада

Радиоактивность - это явление, в ходе которого происходит распад изотопа в радиоактивном виде. Этот процесс подчинен закону: чисто атомов (n), которое распадаются за единицу времени, пропорционально количеству атомов (N), которые имеются в конкретный временной момент:

В этой формуле под коэффициентом λ подразумевают постоянную величину распада радиоактивного характера, которая связана с длительностью полураспада изотоп (T) и соответствует следующему утверждению: λ =0.693/T. Из этого закона вытекает то, что после истечения отрезка времени, равного периоду полураспада, количественная величина изотопа станет меньше в два раза. Если атомы, которые образовались в ходе радиоактивного (р-ного) распада, станут обладать такой же природой, то начнется их накопление, которое длиться будет до момента установления радиоактивного равновесия между двумя изотопами: дочерним и материнским.

Теория и радиоактивный распад

Радиоактивность и распад - это взаимосвязанные объекты изучения. Первое (р-ность) становится возможным благодаря второму (процесс распада).

Понятие радиоактивного распада характеризует себя, как преображение состава или структуры строения атомного нестабильного ядра. Причем, явление это спонтанное. Происходит испускание элементарной частицы (ч-цы) или гамма кванта, а также выброс ядерных фрагментов. Соответствующие этому процессу нуклиды называют радиоактивными. Однако данным термином также называют вещества, ядра которых также относятся к радиоактивным.

Естественная радиоактивность - это распад ядер атомов, что встречаются в природе в самопроизвольном порядке. Искусственной р-тью называют тот же процесс, что мы упомянули выше, но он осуществляется человеком с применением искусственных путей, которые соответствуют особым ядерным реакциям.

Материнским и дочерним называют те ядра, которые распадаются, и те, которые образуются как конечный продукт этого распада. Массовое число и заряд дочерней структуры описывается в правиле смещения Содди.

Явление радиоактивности включает в себя разные спектры, которые зависят от типа энергии. При этом спектр альфа-частиц и y-кварков относятся к прерывистому (дискретному) типу спектра, а бета-частицы - непрерывные.

На сегодняшний день, нам известны не только альфа- гамма- и бета-распады, но и было обнаружено испускание протонов, нейтронов. Также было открыто понятие кластерной радиоактивности и спонтанного деления. Захват электронов, позитронов и двойной входят в раздел бета-распада и рассматривают как его разновидность.

Существуют изотопы, которые могут подвергаться одновременно двум или более видам распада. Примером может служить висмут 212, который с 2/3 вероятности образует таллий 208 (при применении распада альфа типа) и 1/3 приведет к возникновению полония 212 (при эксплуатации бета-распада).

Ядро, которое образовалось в ходе такого распада, иногда может обладать такими же радиоактивными свойствами, и через некоторое время будет разрушено. Явление р-ного распада происходит проще при отсутствии стабильного ядра. Цепочкой распада называют последовательность подобных процессов, а возникающие при этом нуклеотиды именуют радиоактивными ядрами. Ряды таких элементов, которые начинаются с урана 238 и 235, а также тория 232, в конечном итоге приходят в состояние стабильных нуклеотидов, соответственно свинец 206 и 207 и 208.

Явление радиоактивности позволяет некоторым ядрам (изобарам) с одинаковым массовым числом превращаться друг в друга. Это возможно благодаря бета-распаду. Каждая изобарная цепочка включает в себя от одного до трех стабильных нуклидов бета-типа (у них нет способностей к бета-распаду, однако они могут быть нестабильным, например, по отношению к иным видам р-ного распада). Весь остальной набор ядер данной цепи является бета-нестабильным. Посредством применения β-минус- или β-плюс распада, можно превратить ядро в нуклид со β-стабильной формой. Если в изобарной цепи находятся такие нуклиды, то ядро может начать подвергаться бета- положительному или отрицательному распаду. Это явление называют электронным захватом. Примером может служить распад радионуклида калий 40 на соседние β-стабильные состояния аргона 40 и кальция 40.

Об изотопах

Радиоактивность - это, в первую очередь, распад изотопов. В настоящее время человеку известно более сорока изотопов, обладающих радиоактивность и находящихся в естественных условиях. Преобладающее количество расположилось в р-ных рядах: уран-радий, торий и актиний. Все эти частички существуют и распространяются в природе. Они могут присутствовать в горной породе, водах мирового океана, растениях и животных и т.д., а также они обуславливают явление естественной природной радиоактивности.

Помимо естественного ряда р-ных изотопов, человеком было создано более тысячи искусственных видов. Способ получения чаще всего реализует себя в ядерных реакторах.

Множество р-ных изотопов используют и применяют в медицинских целях, например, для борьбы с раком. Очень большое значение они имеют в области диагностики.

Общие сведения

Суть радиоактивности заключается в том, что атомы могут самопроизвольно превращаться из одних в другие. При этом они приобретают более устойчивую или стабильную структуру ядра. Р-ное ядро в ходе трансформации активно выделяет энергетические ресурсы атома, которые принимают вид заряженных частиц или доходят до состояния гамма-квантов; последние в свою очередь образуют либо соответствующее (гамма), либо электромагнитное излучение.

Мы уже знаем о существовании радиоактивных изотопов искусственной и естественной природы. Важно понимать, что между ними нет особого и/или принципиального различия. Это обуславливается свойствами ядер, которые определяться могут только в соответствие структурированием ядра, и они не зависят путей создания.

Из истории

Как и говорилось ранее, открытие радиоактивности произошло благодаря трудам Беккереля, которые были совершены в 1896 году. Этот процесс был выявлен в ходе проведения экспериментов над ураном. Если конкретнее, то ученый старался вызвать эффект почернения фотоэмульсии и подвергнуть воздух ионизации. Мадам Кюри-Склодовская была первой особой, которая измерила величину интенсивности излучения U. А одновременно с ученым из Германии Шмидтом, она выявила р-ность тория. Именно супружеская пара Кюри, после открытия невидимого излучения, наименовала его радиоактивным. В 1898 году ими же было совершено обнаружение полония - еще одного р-ного элемента, который залегал в урановых смоляных рудах. Радий были открыт супругами Кюри также в 1898 г., но немного ранее. Работа была совершена вместе с Бемоном.

После того как было открыто множество р-ных элементов, немалым количеством авторов было доказано и продемонстрировано, что все они обуславливают излучение трех видов, которые изменяют свое поведение в условиях магнитного поля. Единицей радиоактивности служит беккерель (Бк, или Bq). Резерфорд предложил назвать обнаруженные лучи альфа-, бета- и гамма-лучами.

Альфа-излучение - это набор частиц с положительным зарядом. Бета-лучи образуются при помощи электронов, частиц с отрицательным зарядом и малой массой. Гамма-лучи являются аналогом рентгеновских лучей и представлены в виде электромагнитных квантов.

В 1902 году Резерфордом и Содди было объяснено явление радиоактивности посредством произвольной трансформации атома одного элемента в другой. Данный процесс подчинялся законам случайности и сопровождался выделением энергетических ресурсов, которые приняли вид гамма-, бета- и альфа-лучей.

Естественную радиоактивность исследовала М. Кюри совместно с Дебьерном. Они получили в 1910 году металл - радий - в чистом виде, и исследовали его свойства. В частности, внимание уделялось измерению постоянного распада. Дебьерн и Гизель совершили открытие актиния, а Ган обнаружил такие атомы, как радиотории и мезотории. Болтвудом был описан ионий, а Ган и Майтнер совершили открытие протактиния. Каждый изотоп упомянутых элементов, которые были отрыты, обладает радиоактивными свойствами. и Лабордом в 1903 году было описано явление распада радия. Они показали, что продукты реакции 1 грамма Ra за один час распада выделяют около ста сорока ккал. В том же году Рамзаем и Содди было установлено, что запаянная ампула с радием содержит в себе и гелий в газообразном виде.

Труды таких ученых, как Резерфорд, Дорн, Дебьерн и Гизель, показывают нам, что в общий список продуктов распада U и Th включает в себя некоторые быстрораспадающиеся вещества - газы. Они обладают собственной радиоактивностью, а называют их ториевыми или радиевыми эманациями. Также это касается актиния. Они доказали, что при распаде радий создает гелий и радон. Закон радиоактивности о превращении элементов был впервые сформулирован Содди, Расселом и Фаянсом.

Виды излучения

Открытием явления, которое мы изучаем в этой статье, впервые занялся Беккерель. Именно он обнаружил явление распада. Потому единицы радиоактивности называют беккерелями (Бк). Однако, один из самых больших вкладов в развитие учения об р-ности сделал Резерфорд. Он сосредоточил собственные ресурсы внимания на анализе изучаемого распада и смог установить природу данных превращений, а также определить излучение, которое им сопутствует.

Основу его умозаключений составляет постулирование о наличии альфа-, гамма- и бета-излучения, которые испускаются естественными радиоактивными элементами, а измерение радиоактивности позволило вычленить следующие их виды:

  • Β-излучение наделено сильными свойствами проникающей способности. Оно гораздо мощнее альфа-излучения, но точно так же поддается отклонению в магнитном и/или электрическом поле в сторону, противоположную большему расстоянию. Это служит объяснением и доказательством того, что данные частицы - отрицательно заряженные е - . Сделать выводы о том, что излучаются именно электроны, Резерфорд смог на основе анализа соотношения массы к заряду.
  • Α-излучение - волны лучей, которые в условиях атмосферного давления способны преодолеть только маленькие расстояния (обычно не более 7.5 сантиметра). Если поместить его в х вакуум, то можно будет наблюдать, как магнитное и электрическое поле воздействуют на альфа-излучение и приводят к его отклонению от исходной траектории. Анализируя направление и величину отклонения, а также учитывая соотношение между зарядом и массой (e/m), мы можем прийти к выводу, что данное излучение является потоком частиц с положительным зарядом. Соотношение параметров веса и заряда является идентичным значению дважды ионизированного гелиевого атома. На основе своих работ и с использованием спектроскопических исследований, Резерфорд установил, что альфа-излучение образуется ядрами гелия.
  • γ-излучение - вид радиоактивности, который обладает самой большой проникающей способностью среди других видов излучения. Оно не поддается отклонению посредством влияния магнитного поля, а также не обладает зарядом. Это «жесткое» излучение, которое самым нежелательным образом способно воздействовать на живую материю.

Радиоактивное превращение

Еще одним моментом в становлении и конкретизации определения радиоактивности является открытие Резерфордом ядерных структур атомов. Что не менее важно, так это установление взаимосвязи между рядом свойств атома и структурой его ядра. Ведь именно «сердцевина» частицы определяет структуру оболочки электронов и все свойства химического характера. Именно это позволило в полной мере расшифровать принципы и механизм, посредством которых происходит радиоактивное превращение.

Первое успешное превращение ядра было совершено в 1919 году Эрнестом Резерфордом. Он использовал «бомбардировку» ядра атома N с применением альфа-частиц полония. Следствием этого стало испускание азотом протонов с последующим превращением в кислородные ядра - O17.

В 1934 году супруги Кюри получили радиоактивные изотопы фосфора посредством искусственной радиоактивности. Они воздействовали на алюминий альфа-частичками. Полученные ядра P30 имели некоторые отличия от естественных р-ных форм того же элемента. Например, в ходе распада испускались не электронные частички, а позитронные. Далее они трансформировались в стабильные кремниевые ядра (Si30). В 1934 было совершено открытие искусственной радиоактивности и явление позитронного распада.

Захват электрона

Одним из классов радиоактивности является электронный захват (К-захват). В нем электроны захватываются прямо с оболочек атомов. Как правило, К-оболочка испускает некоторое количество нейтронов, а далее преобразуется в новую «сердцевину» атома с таким же показателем массового числа (А). Однако номер атома (Z) становится меньше на 1, в сравнение с исходным ядром.

Процесс превращения ядра в ходе электронного захвата и позитронного распада является действием, аналогичным друг другу. Потому их можно увидеть одновременно в ходе наблюдения за набором атомов одного вида. Электронный захват всегда сопровождается выделением излучения в рентгеновском виде. Это объясняется переходом электрона от более удаленной ядерной орбитали к ближе лежащей. Данное явление, в свою очередь, объясняется тем, что электроны вырываются с орбит, которые расположены ближе к ядру, а их место стремятся заполнить частички с удаленных уровней.

Понятие изомерного перехода

Явление изомерного перехода основано на том, что испускание альфа- и/или бета-частичек приводит к возбуждению некоторых ядер, которые находятся в состоянии избыточных энергий. Испускаемые ресурсы «вытекают» в виде возбужденных гамма-квантов. Изменение состояния ядра в ходе р-ного распада приводит к образованию и выделению всех трех типов частиц.

Изучение изотопа стронция 90 позволило определить, что им испускаются только β-частички, а ядра, например, натрия 24, могут выделять также гамма-кванты. Преобладающее множество атомов пребывают в возбужденном состоянии крайне мало. Это значение столь краткосрочное (10 -9) и малое, что его еще нельзя измерить. Соответственно, лишь небольшой процент ядер способен находиться в состоянии возбуждения сравнительно длительный период времени (вплоть до месяцев).

Ядра способные «жить» так долго, именуют изомерами. Сопутствующие переходы, которые наблюдаются при трансформации из одного состояния в другое и сопровождаются испусканием гамма-квантовых частичек, называют изомерными. Радиоактивность излучения в данном случае приобретает высокие и опасные для жизни значения. Ядра, которые испускают лишь бета- и/или альфа-частицы, именуют чистыми ядрами. Если в ядре наблюдается испускание гамма-квантов в ходе его распада, то его называют гамма-излучателем. Чистым излучателем последнего вида можно назвать только ядро, претерпевающее множество изомерных переходов, что возможно лишь при длительном существовании в возбужденном состоянии.

По радиоактивностью в физике понимают неустойчивость ядер ряда атомов, которая проявляется в их природной способности самопроизвольно распадаться. Этот процесс сопровождается испусканием ионизирующего излучения, которое называют радиацией. Энергия частиц ионизирующего излучения может быть очень велика. Посредством химических реакций радиацию вызвать нельзя.

Радиоактивные вещества и технические установки (ускорители, реакторы, оборудование для рентгеновских манипуляций) являются источниками радиации. Сама радиация существует только до момента поглощения в веществе.

Радиоактивность измеряется в беккерелях (Бк). Нередко используют другую единицу - кюри (Ки). Активность источника радиации характеризуется числом распадов в секунду.

Мерой ионизирующего воздействия излучения на вещество является экспозиционная доза, чаще всего она измеряется в рентгенах (Р). Один рентген - очень большая величина. Поэтому на практике чаще всего используют миллионные или тысячные доли рентгена. Излучение в критических дозах вполне может стать причиной лучевой болезни.

С понятием радиоактивности тесно связано понятие периода полураспада. Так называют время, за которое число радиоактивных ядер уменьшается вдвое. Каждый радионуклид (вид радиоактивного атома) имеет свой период полураспада. Он может быть равен секундам или миллиардам лет. Для целей научных исследований важен тот принцип, что период полураспада одного и того же радиоактивного вещества постоянен. Изменить его не получится.

Общие сведения о радиации. Виды радиоактивности

При синтезе вещества или его распаде идет выброс составляющих атом элементов: нейтронов, протонов, электронов, фотонов. Говорят при этом, что происходит излучение таких элементов. Подобное излучение называют ионизирующим (радиоактивным). Другое название этого явления - радиация.

Под радиацией понимают процесс, при котором веществом излучаются элементарные заряженные частицы. Вид радиации определяется теми элементами, которые излучаются.

Ионизацией именуют процесс образования заряженных ионов или электронов из нейтральных молекул или атомов.

Радиоактивное излучение делят на несколько видов, которые вызываются различными по своей природе микрочастицами. Частицы вещества, участвующие в излучении, обладают разным энергетическим воздействием, разной проникающей способностью. Разным будет и биологические действие радиации.

Когда говорят о видах радиоактивности, под ними понимают виды радиации. К ним в науке относят следующие группы:

  • альфа-излучение;
  • бета-излучение;
  • нейтронное излучение;
  • гамма-излучение;
  • рентгеновское излучение.


Альфа-излучение

Этот вид радиации возникает в случае распада изотопов элементов, не отличающихся стабильностью. Так называют излучение тяжелых и положительно заряженных альфа-частиц. Ими являются ядра атомов гелия. Альфа-частицы могут получаться при распаде сложных ядер атомов:

  • тория;
  • урана;
  • радия.

Альфа-частицы отличает большая масса. Скорость излучения этого вида относительно невысока: она в 15 раз ниже скорости света. При контакте с веществом тяжелые альфа-частицы входят в столкновение с его молекулами. Происходит взаимодействие. Однако частицы теряют энергию, поэтому их проникающая способность очень мала. Задержать альфа-частицы может простой лист бумаги.

И все же при взаимодействии с веществом альфа-частицы вызывают его ионизацию. Если речь идет о клетках живого организма, что альфа-излучение способно их повреждать, разрушая при этом ткани.

Альфа-излучение обладает наименьшей среди других видов ионизирующего излучения проникающей способностью. Однако последствия воздействия таких частиц на живую ткань считается самыми тяжелыми.

Получить дозу радиации данного вида живой организм может, если радиоактивные элементы попадут внутрь организма с пищей, воздухом, водой, через ранения или порезы. Когда радиоактивные элементы проникают внутрь организма, они посредством кровотока разносятся по всем его частям, накапливаются в тканях.

Определенные виды радиоактивных изотопов могут существовать продолжительное время. Поэтому при попадании в организм они могут вызывать в клеточных структурах очень серьезные изменения - вплоть до полного перерождения тканей.

Радиоактивные изотопы не могут выйти из организма сами. Нейтрализовать, усвоить, переработать или утилизировать такие изотопы организм не в состоянии.

Нейтронное излучение

Так называется техногенное излучение, которое возникает при атомных взрывах или в ядерных реакторах. Нейтронное излучение не обладает зарядом: Сталкиваясь с веществом, оно очень слабо взаимодействует с частями атома. Проникающая способность этого вида радиации высока. Остановить его могут материалы, в которых много водорода. Это может быть, в частности, емкость с водой. Нейтронное излучение также с трудом проникает через полиэтилен.

При прохождении сквозь биологические ткани нейтронное излучение способно причинить клеточным структурам очень серьезный ущерб. Оно обладает существенной массой, скорость его гораздо выше, чем у альфа-излучения.

Бета-излучение

Оно возникает в момент превращения одного элемента в другой. Процессы при этом идут в самом ядре атома, что приводит к изменениям в свойствах нейтронов и протонов. При данном виде излучения нейтрон превращается в протон или же протон в нейтрон. Процесс сопровождается излучением позитрона или электрона. Скорость бета-излучения близка к скорости света. Элементы, которые излучаются веществом, носят название бета-частиц.

За счет высокой скорости и малых размеров излучаемых частиц бета-излучение имеет высокую проникающую способность. Однако его способность ионизировать вещество в несколько раз меньше, чем у альфа-излучения.

Бета-излучение без всякого труда проникает сквозь одежду и в некоторой степени - через живые ткани. Но если частицы встречают на своем пути плотные структуры вещества (к примеру, металл), они начинают с ним взаимодействовать. При этом бета-частицы теряют часть своей энергии. Полностью остановить такое излучение способен металлический лист толщиной в несколько миллиметров.

Альфа-излучение опасно лишь при непосредственном контакте с радиоактивным изотопом. А вот бета-излучение может нанести вред организму на расстоянии в несколько десятков метров от источника излучения. Когда радиоактивный изотоп оказывается внутри организма, он имеет тенденцию к накоплению в органах и тканях, повреждая их и вызывая существенные изменения.

Отдельные радиоактивные изотопы бета-излучения имеют продолжительный период распада: попав в организм, они вполне могут облучать его на протяжении ряда лет. Следствием этого может быть рак.

Гамма-излучение

Так называют энергетическое излучение электромагнитного типа, когда вещество испускает фотоны. Данное излучение сопровождает распад атомов вещества. Гамма-излучение проявляется в виде электромагнитной энергии (фотонов), которая высвобождается в ходе изменения состояния ядра атома. Гамма-излучение имеет скорость, равную скорости света.

Когда идет радиоактивный распад атома, из одного вещества образуется другое. Атомы получившихся веществ энергетически нестабильны, они находятся в так называемом возбужденном состоянии. Когда нейтроны и протоны воздействуют друг на друга, протоны и нейтроны приходят к состоянию, при котором силы взаимодействия становятся уравновешенными. Излишки энергии атом выбрасывает в виде гамма-излучения.

Проникающая способность его велика: гамма-излучение без труда проникает сквозь одежду и живые ткани. Но через металл ему пройти намного сложнее. Остановить такой вид радиации может толстый слой бетона или стали.

Главная опасность гамма-излучения в том, что оно способно преодолевать очень большие расстояния, оказывая при этом сильное воздействие на организм за сотни метров от источника излучения.

Рентгеновское излучение

Под ним понимают электромагнитное излучение, имеющее вид фотонов. Рентгеновское излучение возникает в случае перехода электрона с одной атомной орбиты на другую. По своим характеристикам такое излучение сходно с гамма-излучением. Но проникающая способность его не так велика, ведь длина волны в этом случае больше.

Одним из источников рентгеновского излучения является Солнце; однако атмосфера планеты дает достаточную защиту от этого воздействия.

К основным типам радиоактивности относятся альфа-,бета- и гамма-распады..

Альфа-распад. В этом случае происходит самопроизвольное испускание ядром α-частицы (ядра нуклида 4 Не), и это проис­ходит по схеме

где X - символ материнского ядра, Y - дочернего.

Установлено, что α-частицы испускают только тяжелые ядра. Кинетическая энергия, с которой α-частицы вылетают из рас­падающегося ядра, порядка нескольких МэВ. В воздухе при нормальном давлении пробег α-частиц составляет несколько сантиметров (их энергия расходуется на образование ионов на своем пути).

Альфа-частица возникает только в момент радиоактивного распада ядра. Покидая ядро, ей прихо­дится преодолевать потенциальный барь-­
ер, высота которого превосходит ее энер­гию (см.рис.).

Внутренняя сторона барь­ера обусловлена ядерными силами, внешняя же - силами кулоновского от­талкивания α-частицы и дочернегоядра.
Преодоление α-частицей потенциаль­
ного барьера в данных условиях происходит благодаря туннельному эффекту

Квантовая теория, учитывая вол­новые свойства α-частицы, «позволяет» ей с определенной веро­ятностью проникать сквозь такой барьер. Соответствующий расчет хорошо подтверждается результатами измерений.

Бета-распад. Так называют самопроизвольный процесс, в котором исходное ядро превращается в другое ядро с тем же массовым числом А , но с зарядовым числом Z , отличающимся от исходного на ±1. Это связано с тем, что β -распад сопровождается испусканием электрона (позитрона) или его захватом из оболочки атома. Различают три разновидности β -распада:

1)электронный - распад, в котором ядро испускает электрон и его зарядовое число Z становится Z + 1;

2)позитронный - распад, в котором ядро испускает позитрон и его зарядовое число Z становится Z - 1;

3)К -захват , в котором ядро захватывает один из электронов электронной оболочки атома (обычно из К -оболочки) и его зарядовое число Z становится равным Z -1. На освободив­шееся место в К -оболоч-ке переходит электрон с другой обо­лочки, и поэтому К -захват всегда сопровождается характе­-
ристическим рентгеновским излучением.

«Проблему -распада» ре­шил Паули (1930), предположивший, что вместе с электроном испускается электрически нейтральная частица, неуловимая вследствие очень большой проникающей способности. Ее назва­ли нейтрино .

Важное обстоятельство в пользу гипотезы о существовании нейтрино - это необходимость сохранения момента импульса в реакции распада. Дело в том, что отличи­тельной чертой (-распада является превращение в ядре ней­трона в протон, и наоборот. Поэтому можно сказать, что -распад есть не внутриядерный процесс, а внутринуклонный про­цесс. В связи с этим указанные выше три разновидности -распада обусловлены следующими превращениями нукло­нов в ядре:


Сейчас установлено, что спин ней­трино равен 1/2.

Наблюдать нейтрино непосредственно очень сложно. Это обу­словлено тем, что их электрический заряд равен нулю, масса (если она есть) чрезвычайно мала, фантастически мало и эф­фективное сечение взаимодействия их с ядрами. Согласно тео­ретическим оценкам средняя длина свободного пробега нейтри­но с энергией 1 МэВ в воде порядка 10 16 км (или 100 световых лет!). Это значительно превышает размеры звезд. Такие ней­трино свободно пронизывают Солнце, а тем более Землю.

Чтобы зарегистрировать процесс захвата нейтрино, необхо­димо иметь огромные плотности потока их. Это стало возмож­ным только после создания ядерных реакторов, которые и были использованы как мощные источники нейтрино.

Непосредственное экспериментальное доказательство суще­ствования нейтрино было получено в 1956 г.

Гамма-распад . Этот вид распада заключается в испускании возбужденным ядром при переходе его в нормальное состояние γ-квантов, энергия которых варьируется в пределах от 10 кэВ до 5 МэВ. Существенно, что спектр испускаемых γ-квантов диск­ретный, так как дискретны энергетические уровни самих ядер.

В отличие от β -распада, γ -распад - процесс внутриядерный, а не внутринуклонный.

Возбужденные ядра образуются при β -распаде в случае, если распад материн­ского ядра X в основное состояние дочерне­го ядра Y запрещен. Тогда дочернее ядро Y оказывается в одном из возбужденных состояний, переход из которого в основное состояние и сопровождается испусканием у-квантов (см.рис.).

Возбужденное ядро может перейти в основное состояние и другим путем, путем непосредственной передачи энергии воз­буждения одному из атомных электронов, например, в К -оболочке. Этот процесс, конкурирующий с β -распадом, называют внутренней конверсией электронов.Внутренняя конверсия сопровождается рентгеновским излучением.

Ядерные реакции

Ядерная реакция - это процесс сильного взаимодействия атомного ядра с элементарной частицей или с другим ядром, - процесс, сопровождающийся преобразованием ядер. Это взаи­модействие возникает благодаря действию ядерных сил при сближении частиц до расстояний порядка 10 -13 см.

Отметим, что именно ядерные реакции дают наиболее широ­кую информацию о свойствах ядер. Поэтому изучение ядерных реакций является самой главной задачей ядерной физики.

Наиболее распространенным типом ядерной реакции явля­ется взаимодействие частицы а с ядром X, в результате чего об­разуется частица b и ядроY. Это записывают символически так:

Роль частиц а и b чаще всего выполняют нейтрон п , протон р , дейтрон d , α -частица и γ -квант..

Частицы, рождающиеся в результате ядерной реакции, могут быть не только b и Y , но вместе с ними и другие b", Y" . В этом случае говорят, что ядерная реакция имеет несколько ка­налов, причем различным каналам соответствуют различные вероятности.

Типы ядерных реакций. Установлено, что реакции, вызыва­емые не очень быстрыми частицами, протекают в два этапа. Первый этап - это захват налетающей частицы а ядром X с об­разованием составного (или промежуточного) ядра. При этом энергия частицы а быстро перераспределяется между всеми нуклонами ядра, и составное ядро оказывается в возбужденном состоянии. В этом состоянии ядро пребывает до тех пор, пока в результате внутренних флуктуации на одной из частиц (кото­рая может состоять и из нескольких нуклонов) не сконцентри­руется энергия, достаточная для вылета ее из ядра.

Такой механизм протекания ядерной реакции был предло­жен Н. Бором (1936) и впоследствии подтвержден эксперимен­тально. Эти реакции иногда записывают с указанием составно­го ядра С , как например

где звездочка у С указывает на то, что ядро С* возникает в воз­бужденном состоянии.

Составное ядро С* существует достаточно долго - по сравне­нию с «ядерным временем», т. е. временем пролета нуклона с энергией порядка 1 МэВ (v 10 9 см/с) расстояния, равного диа­метру ядра. Ядерное время я 10 -21 с. Время же жизни состав­ного ядра в возбужденном состоянии ~ 10 -14 с. Т. е. в ядерном масштабе составное ядро живет действительно очень долго. За это время все следы истории его образования исчезают. Поэто­му распад составного ядра - вторая стадия реакции - проте­кает независимо от способа образования составного ядра.

Реакции, вызываемые быстрыми частицами с энергией, пре­вышающей десятки МэВ, протекают без образования составно­го ядра. И ядерная реакция, как правило, является прямой. В этом случае налетающая частица непосредственно передает свою энергию какой-то частице внутри ядра, например, одному нук­лону, дейтрону, α -частице и т. д., в результате чего эта частица вылетает из ядра.

Типичная реакция прямого взаимодействия - это реакция срыва, когда налетающей частицей является, например, дей­трон. При попадании одного из нуклонов дейтрона в область действия ядерных сил он будет захвачен ядром, в то время как другой нуклон дейтрона окажется вне зоны действия ядерных сил и пролетит мимо ядра. Символически реакцию срыва запи­сывают как (d, n ) или (d, p ).

При бомбардировке ядер сильно взаимодействующими час­тицами с очень высокой энергией (от нескольких сотен МэВ ивыше) ядра могут «взрываться», распадаясь на множество мел­ких осколков. При регистрации такие взрывы оставляют след в виде многолучевых звезд.

Энергия реакции . Принято говорить, что ядерные реакции могут происходить как с выделением, так и с поглощением энергии.

Реакции с выделением энергии называют экзоэнергетическими, реакции с поглощением энергии - эндоэнергетическими.

У электрона есть античастица - позитрон, который был обнаружен в составе космического излучения. Существо­вание позитронов также было доказано наблюдением их треков в камере Вильсона, помещенной в магнитном поле. Позитрон - частица с массой, равной массе электрона, и спином 1/2 (в единицах ), несущая положительный заряд +е.

Согласно Бору, ядерные реакции протекают в две стадии по схеме:

Первая стадия - захват ядром частицы а и образование промежуточного ядра С , называемого составным, или компаунд-ядром. Вторая стадия - распад составного ядра на ядро Y и частицу b .

Фредерик и Ирен Жолио-Кюри бомбардировали α -частицами В, А1 и Mg, что привело к искусственно радиоактивным ядрам, претерпеваю-щим -распад (позитронный распад или + р- распад):

В ядерных реакциях выполняется правило смещения

Процесс р + - распада протекает так, как если бы один из протонов ядра превратился в нейт­рон, испустив при этом позитрон и нейтрино:

Позитроны могут рождаться при взаимодействии γ -квантов большой энергии (E γ > 1,02 МэВ = 2m e с 2 ) с веществом. Этот процесс протекает по схеме

Электронно-позитронные пары были обнаружены в камере Вильсона, поме­щенной в магнитное поле, в которой и отклонялись в противопо­ложные стороны. Процесс превращения электронно-позитронной пары (при столкновении позитрона с электроном) в два γ - кванта, называется аннигиляция. При аннигиляции энергия пары переходит в энергию фотонов

Появление в этом процессе двух γ -квантов следует из законов сохранения импульса и энергии.

Захват ядром электрона с одной из внутренних оболочек атома (К, L и т. д.) с испусканием нейтрино (электронный захват или е-захват) происходит по следующей схеме:

(появление нейтрино вытекает из закона сохранения спина). В общем виде схема е -захвата:

В зависимости от скорости (энергии) нейтроны делят на медленные и быстрые.

Медленные нейтроны: ультрахолодные (≤ 10 -7 эВ),

очень холодные(10 -7 ÷10 -4 эВ),холодные(10 -4 ÷10 -3 эВ),

тепловые (10 -3 ÷0,5 эВ), резонансные (0,5÷10 4 эВ) Электронный захват обнаруживается по сопровождающему его харак­теристическому рентгеновскому излучению, возникающему при заполнении образовавшихся вакансий в электронной оболочке атома. Вся энергия распада уносится нейтрино.

Замедлить нейтроны можно пропуская их через вещество, содержащее водород (например, воду). Они испытывают при этом рассеяние и замедляются.

Ядерная физика - это раздел физики, в котором изучаются структура и свойства атомных ядер. Ядерная физика занимается также изучением взаимопревращения атомных ядер, совершающиеся как в результате радиоактивных распадов, так и в результате различных ядерных реакций. Основная ее задача связана с выяснением природы ядерных сил, воздействующих между нуклонами, и особенностей движения нуклонов в ядрах. Протоны и нейтроны - это основные элементарные частицы, из которых состоит ядро атома. Нуклон - это частица, обладающая двумя различными зарядовыми состояниями: протон и нейтрон. Заряд ядра - количество протонов в ядре, одинаковое с атомным номером элемента в периодической системе Менделеева. Изотопы - ядра, имеющие один и тот же заряд, если массовое число нуклонов различно.

Изобары - это ядра, обладающие одним и тем же числом нуклонов, при разных зарядах.

Нуклид - это конкретное ядро со значениями. Удельная энергия связи - это энергия связи, приходящаяся на один нуклон ядра. Ее определяют экспериментально. Основное состояние ядра - это состояние ядра, имеющего наименьшую возможную энергию, равную энергии связи. Возбужденное состояние ядра - это состояние ядра, имеющего энергию, большую энергии связи. Корпускулярно-волновой дуализм. Фотоэффект Свет имеет двойственную корпускулярно-волновую природу, т. е. корпускулярно-волновой дуализм: во-первых: он имеет волновые свойства; во-вторых: он выступает в роли потока частиц - фотонов. Электромагнитное излучение не только испускается квантами, но распространяется и поглощается в виде частиц (корпускул) электромагнитного поля - фотонов. Фотоны являются реально существующими частицами электромагнитного поля. Квантование - это метод отбора орбит электронов, соответствующих стационарным состояниям атома.

РАДИОАКТИВНОСТЬ

Радиоактивностью - называется способность атомного ядра самопроизвольно распадаться с испусканием частиц. Спонтанный распад изотопов ядер в условиях природной среды называют естественной радиоактивностью - это радиоактивность, которую можно наблюдать у существующих в природе неустойчивых изотопов. А в условиях лабораторий в результате деятельности человека искусственной радиоактивностью - это радиоактивность изотопов, приобретенных в результате ядерных реакций. Радиоактивность сопровождается

превращением одного химического элемента в другой и всегда сопровождается выделением энергии. Для каждого радиоактивного элемента установлены количественные оценки. Так, вероятность распада одного атома в одну секунду характеризуется постоянной распада данного элемента, а время, за которое распадается половина радиоактивного образца, называется периодом полураспада.Число радиоактивных распадов в образце за одну секунду называют активностью радиоактивного препарата. Единица активности в системе СИ – Беккерель (Бк): 1 Бк=1распад/1с.

Радиоактивный распад - это процесс, являющийся статическим, при котором ядра радиоактивного элемента распадаются независимо друг от друга. ВИДЫ РАДИОАКТИВНОГО РАСПАДА

Основными видами радиоактивного распада являются:

Альфа - распад

Альфа-частицы испускаются только тяжелыми ядрами, т.е. содержащими большое число протонов и нейтронов. Прочность тяжелых ядер мала. Для того, чтобы покинуть ядро, нуклон должен преодолеть ядерные силы, а для этого он должен обладать достаточной энергией. При объединении двух протонов и двух нейтронов в альфа-частицу ядерные силы в подобном сочетании являются наиболее крепкими, а связи с другими нуклонами слабее, поэтому альфа-частица способна "выйти" из ядра. Вылетевшая альфа-частица уносит положительный заряд в 2 единицы и массу в 4 единицы. В результате альфа-распада радиоактивный элемент превращается в другой элемент, порядковый номер которого на 2 единицы, а массовое число на 4 единицы, меньше.То ядро, которое распадается, называют материнским, а образовавшееся дочерним. Дочернее ядро оказывается обычно тоже радиоактивным и через некоторое время распадается. Процесс радиоактивного распада происходит до тех пор, пока не появится стабильное ядро, чаще всего ядро свинца или висмута.

Бета-распад

Явление бета-распада состоит в том, что ядра некоторых элементов самопроизвольно испускают электроны и элементарную частицу очень малой массы - антинейтрино. Так как электронов в ядрах нет, то появление бета-лучей из ядра атома можно объяснить способностью нейтронов ядра распадаться на протон, электрон и антинейтрино. Появившийся протон переходит во вновь образующееся ядро. Электрон, вылетающий из ядра, и является частицей бета-излучения. Такой процесс распада нейтронов характерен для ядер с большим количеством нейтронов. В результате бета-распада образуется новое ядро с таким же массовым числом, но с большим на единицу зарядом.

Гамма - распад - не существует. В процессе радиоактивного излучения ядра атомов могут испускать гамма-кванты. Испускание гамма-квантов не сопровождается распадом ядра атома. Гамма излучение зачастую сопровождает явления альфа- или бета-распада. При альфа- и бета-распаде новое возникшее ядро первоначально находится в возбужденном состоянии и, когда оно переходит в нормальное состояние, то испускает гамма-кванты. Так как радиоактивное излучение состоит из альфа-частиц, бета-частиц и гамма-квантов, то явление радиоактивности сопровождается потерей массы и энергии ядра, атома и вещества в целом.

γ-распад – испускание атомным ядром γ-квантов;

спонтанное деление – распад атомного ядра на два или три осколка сравнимой массы.

16 Химия - это одна из отраслей естествознания, предметом изучения которой являются химические элементы (атомы ), образуемые ими простые и сложные вещества (молекулы), их превращения и законы , которым подчиняются эти превращения.

Химия - наука о химических элементах, их соединениях и превращениях, происходящих в результате химических реакций. Она изучает, из каких веществ состоит тот или иной предмет; почему и как ржавеет железо , и почему олово не ржавеет; что происходит с пищей в организме; почему раствор соли проводит электрический ток, а раствор сахара - нет; почему одни химические изменения происходят быстро, а другие - медленно.

Химия - Наука о составе, строении, изменениях и превращениях, а также об образовании новых простых и сложных веществ. Химию, говорит Энгельс, можно назвать наукой о качественных изменениях тел, происходящих под влиянием изменения количественного состава.

Химия. - греч. наука о разложении и составлении веществ, тел, об отыскании неразлагаемых стихий, основ.

Химию довольно произвольно делят на несколько разделов, которые нельзя четко отграничить ни от других областей химии, ни от других наук (физики, геологии, биологии). Неорганическая химия занимается изучением химической природы элементов и их соединений, за исключением большинства соединений углерода.

Органическая химия изучает соединения, состоящие в основном из углерода и водорода. Поскольку атомы углерода могут соединяться друг с другом с образованием колец и длинных цепочек, как линейных, так и разветвленных, таких соединений существует сотни тысяч. Из органических соединений состоят уголь и нефть, они составляют основу живых организмов. Химики-органики научились получать из угля, нефти, растительных материалов синтетические волокна, пестициды, красители, лекарства, пластики и множество других полезных вещей

Радиохимия - это наука о химическом воздействии высокоэнергетического излучения на вещества; она занимается также изучением поведения радиоактивных изотопов Физическая химия использует физические методы для изучения химических систем. Большое место в ней занимают вопросы энергетики химических процессов; соответствующий раздел химии называется химической термодинамикой. К важнейшим направлениям относятся химическая кинетика и строение молекул. Электрохимия изучает химические процессы, протекающие под действием электрического тока, а также способы получения электричества химическими методами. Среди других направлений следует отметить коллоидную химию (она занимается исследованием поведения дисперсных систем), химию поверхностных явлений, статистическую механику.

Аналитическая химия - старейшая область химии. Она занимается разложением сложных веществ на более простые, анализом самих веществ и их составляющих. Сегодня в ней широко используются сложное физическое оборудование и компьютеры, позволяющие автоматизировать рутинные процессы, сбор и обработку данных.

Биохимия изучает сложнейшие химические процессы, протекающие в живых организмах. Биохимик должен детально знать органическую химию, владеть многими химическими и физическими методами анализа. К биохимии примыкают биофизика и молекулярная биология.

Геохимия занимается исследованием химических процессов, протекающих в земной коре. Она изучает образование минералов, метаморфоз скальных пород, образование нефти, пересекается с органической химией и биохимией, а также физикой и физической химией.

Химический элемент – это простое вещество, состоящее из одинаковых атомов.

Природа разных химических элементов различна, так например, многие химические элементы содержатся в природе в чистом виде, некоторые из химических элементов можно вычленить из сложного вещества путем разложения, а можно и вовсе синтезировать новый химический элемент искусственным путем.

Атомы химических элементов – это своего рода строительный материал, из которого выстраиваются все окружающие нас с вами тела.

В природе существует около ста различных химических элементов. И именно эта сотня элементов является фундаментом всего, что нас окружает. Атомы могут соединяться в молекулы, совершенно разнообразными способами, которым нет числа.

Кроме всего прочего, каждый химический элемент имеет свое название. Все, наверное, слышали такие названия как: сера, водород, ртуть, мышьяк и другие. Это и есть названия химических элементов. Но помимо своих русскоязычных наименований химические элементы имеют еще и международные стандартные обозначения. Например, водород обозначается, как H, кислород – O и т.д.

Вещества чаще всего классифицируют по двум самым важным показателям - их строению и составу.

молекулярные и немолекулярные . Молекулярных веществ, т. е. веществ, состоящих из молекул, - подавляющее большинство. В немолекулярных веществах атомы сразу образуют макроскопические тела, не объединяясь перед этим в молекулы.

Для веществ немолекулярного строения характерны только эмпирические формулы, показывающие, какие атомы и в каком количестве содержатся в повторяющемся фрагменте. В нашем примере эмпирическая формула вещества - SiO 2 , и это ни что иное, как самый обыкновенный песок.

органические и неорганические. Слово органи́ческий происходит от слова организм , т. е. живой, живущий. И действительно, вся живая материя на Земле состоит из огромного разнообразия органических веществ. Несколько столетий назад считали, что органические вещества могут содержаться только в растениях и животных, однако сегодня мы встречаемся с ними и далеко за пределами живой природы: это пластмассы, пластики, клеи, краски, синтетические ткани и многие другие материалы.

Органические вещества обязаны своему существованию одному единственному элементу - углероду. В отличие от остальных элементов, именно углерод обладает удивительным свойством: его атомы способны соединяться непосредственно друг с другом, образуя всевозможные цепи и кольца .

углеродная цепь углеродное кольцо

Вещества, основу которых составляют углеродные цепи и кольца, и называются органическими . Например, приведенная выше цепь может лечь в основу вот такой органической молекулы

Все остальные вещества, т. е. не содержащие углеродных цепей и колец, называются неорганическими . Однако, неправильно было бы думать, что они не могут входить в состав живых организмов. Так, вода - вещество, без которого жизнь вообще немыслима, является, очевидно, неорганическим. На схеме (рис. 2 ) видно, что неорганических веществ значительно меньше, чем органических: всего около 700 тысяч, при том, что они приходятся на долю всех остальных химических элементов. Неорганические вещества, в свою очередь, образуют две обширные группы: простые и сложные.

Простыми называются вещества, состоящие из атомов только одного элемента, например H 2 , O 2 , Fe, Au. Как правило, элемент и простое вещество, образованное им, имеют одно и то же название: водород, кислород, железо, золото. Простые вещества, а также соответствующие им химические элементы, делятся на два класса: металлы и неметаллы . Металлы отличаются от неметаллов хорошей тепло- и электропроводностью, ковкостью, характерным блеском (рис. 3) и рядом других свойств.

Сложными называются неорганические вещества, образованные атомами разных элементов. Сложные вещества, или, как их еще называют - химические соединения , - невероятно разнообразны по строению и свойствам. Они составляют основную часть неживой природы (рис. 4), хотя, как мы уже знаем, могут встречаться и в составе живых организмов.